SYNTHESES OF 8-(1,2,3,4-TETRACHLOROFULVEN-6-YL)HEPTAFULVENE AND 8-(9-FLUORENYLIDENE)METHYLHEPTAFULVENE

Shigeyasu KURODA, Masaji ODA, and Yoshio KITAHARA*

Department of Chemistry, Faculty of Science, Tohoku University

Sendai 980

Treatment of [2-(2,3,4,5-tetrachloro-1,3-cyclopentadienyl) vinyl] - tropylium fluoroborate $\underline{9}$ with bases gave 8-(1,2,3,4-tetrachloroful-ven-6-yl) heptafulvene $\underline{4}$. In similar way 8-(9-fluorenylidene) methyl heptafulvene $\underline{5}$ was also prepared. $\underline{4}$ is more polar than $\underline{5}$ is, but is less stable. Both $\underline{4}$ and $\underline{5}$ easily gave [8+2] cycloadducts with tetracyanoethylene.

Recently, syntheses of 6,6'-bifulvenyl $\underline{1}^1$ and 8,8'-biheptafulvenyl $\underline{2}^2$ have been reported by Prinzbach et al. and by us, respectively. However, 8-(6-fulvenyl)heptafulvene $\underline{3}$, a vinylog of sesquifulvalene, has been yet unknown. We here report the syntheses of its tetrachloro and dibenzo derivatives, $\underline{4}$ and $\underline{5}$.

Reaction of a mixture of 1-formylmethyl-and 3-formylmethylcycloheptatriene, 3

6a and 6b (ca 9:11 by NMR analysis), with tetrachlorocyclopentadiene in hexane at 0°C using triethylamine as a base gave a mixture of 8a and 8b in 32% yield. The 1H-NMR spectrum of the mixture shows the presence of seven olefinic protons and three aliphatic protons, one of the aliphatic protons appearing at ca 6 4.9 ppm, to suggest that 8a and 8b are 1-and 3-[2-(2,3,4,5-tetrachloro-1,3-cyclopentadienyl)vinyl] cycloheptatriene, respectively. 8 may be formed from the initially expected fulvene derivative 7 by base catalysed double bond migration. Treatment of the

mixture $\underline{8}$ with triphenylmethyl tetrafluoroborate in methylene chloride at room temperature gave [2-(2,3,4,5-tetrachloro-1,3-cyclopentadienyl)vinyl]tropylium tetrafluoroborate $\underline{9}$ (mp 140°C, deep red prisms from acetonitrile-methylene chloride) in 66% yield. The large coupling constant (J=16.0 Hz, see the Table) between the two olefinic protons indicates their relationship to be trans. Addition of $\underline{9}$ into pyridine at 0°C resulted in deep purple solution and subsequent dilution with water after a few minutes gave $\underline{4}$ in more than 90% yield as dark purple solid. Formation of $\underline{4}$ was also successful by treatment of $\underline{9}$ with triethylamine in methylene chloride. In this case, however, the isolation of $\underline{4}$ was difficult because it rapidly decomposed during chromatographic separation. $\underline{4}$ decomposed at ca 100°C without melting.

Compound $\underline{5}$ was prepared as follows. Reaction of the aldehydes, $\underline{6a}$ and $\underline{6b}$, with triphenylphosphonium fluorenylide⁴ in refluxing chloroform gave a mixture of 9-(2-cycloheptatrienylethylidene) fluorenes, $\underline{10a}$ and $\underline{10b}$, in 82% yield as a pale yellow oil. The 1 H-NMR spectrum of the mixture shows the presence of four aliphatic protons at δ 3.68 (m, 2H) and 2.30 ppm (m, 2H) to indicate that $\underline{10}$ is a dibenzofulvene derivative. Treatment of $\underline{10}$ with triphenylmethyl tetrafluoroborate in methylene

chloride gave the tropylium salt $\underline{11}$ in 77% yield. Reaction of $\underline{11}$ with triethylamine in methylene chloride gave $\underline{5}$ (mp 154-154.5°C, dark brown needles from n-hexane-ethanol) in 89% yield.

The spectral data of $\underline{4}$, $\underline{5}$, $\underline{9}$, and $\underline{11}$ are listed in the Table. $\underline{4}$ is moderately stable in solid state at room temperature, but is unstable in solutions giving polymeric materials; in chloroform it completely decomposed within 20 min at room temperature, while in pyridine and tetrahydrofuran it is slightly more stable (half-life time in pyridine at 10^{-5} mole concentration was 30 min at 23°C). $\underline{5}$ is stable both in solid state and in solutions.

The chemical shift of the seven-membered ring protons of $\underline{4}$ (δ 6.40 ppm) is ca 0.6 ppm lower than those of $\underline{5}$ (δ 5.83 ppm) to indicate that the contribution of the dipolar resonance form 4' to the resonance hybrid of $\underline{4}$ is greater than $\underline{5}$ ' to $\underline{5}$ is. The NMR spectra of $\underline{4}$ and $\underline{5}$ in trifluoroacetic acid were identical with those of $\underline{9}$ and $\underline{11}$ in the same solvent, showing that protonation occurred in the five membered ring for $\underline{4}$ and at C-8 of the heptafulvene moiety for $\underline{5}$.

Both $\underline{4}$ and $\underline{5}$ easily reacted with tetracyanoethylene at room temperature to give a 9:1 and 7:2 stereoisomeric mixture of [8+2]cycloadducts, 12 and 13, respectively.

The major isomers of $\frac{12}{12}$ (mp 103-105°C) and $\frac{13}{12}$ (mp 122-123°C) were isolated by repeated recryatalizations from n-heaxane-methylene chloride.

Attempts to prepare the parent hydrocarbon $\underline{3}$ in similar way have been unsuccessful.

Table The spectral data of $\underline{4}$, $\underline{5}$, $\underline{9}$, $\underline{11}$, $\underline{12}$, and $\underline{13}$

Compound	IR cm ⁻¹ a	UV nm <u>(</u> löge)	¹ H-NMR ppm (J Hz)
4	1590, 1530, 1367 1237, 1090, 838 750, 692	516 (4.57) b 526 c	7.51 d (13.5) 1H b 7.03 d (13.5) 1H 6.40 m 6H
<u>5</u>	1613, 1574, 1540 1348, 862, 743	231 (4.48) 254 (4.63) 433 (4.67) 450 (4.68)	7.75 m 4H e 7.30 m 5H 6.60 d (12.0) 2H 6.25 br. d (11) 1H 5.83 m 4H
9	1590, 1505, 1240 1060, 745	257 (4.16) f 518 (4.22)	8.96 m 6H ^g 8.01 d (16.0) 1H 7.47 d (16.0) 1H 5.27 s 1H
11	1600, 1530, 1450 1060, 780, 730	210 sh (4.53) ^f 284 (4.32)	9.14 br. s 6H h 7.72 m 4H 7.40 m 4H 6.78 t (7.0) 1H 4.90 d (7.0) 2H
12	2260, 1642, 1575 1240, 710, 700	276 (4.40) ^d 305 sh (4.27)	6.77 m 2H e 6.42 m 1H 6.39 d (10.0) 1H 6.15 m 1H 6.00 br.d (10.0) 1H 5.63 dd (9.5, 4.5) 1H 3.26 ddd (4.5, 3.0, 1.5)1H
<u>13</u>	2260, 1605, 1452 785, 730, 710	216 (4.61) d 223 (4.52) 252 (4.55) 261 (4.74) 285 (4.20) 305 (4.20) 313 (4.20) 318 (4.20)	7.75 m 4H e 7.35 m 4H 6.8-6.2 m 5H 5.65 m 2H 3.32 narrow m 1H

a) in KBr disk, b) in tetrahydrofuran, c) in pyridine, d) in cyclohexane e) in $CDCl_3$, f) in conc H_2SO_4 , g) in CF_3COOH , h) in $CDCl_3$ at 100 MHz

References

- * To whom all correspondences should be addressed.
- 1) H. Sauter and H. Prinzbach, Angew. Chem., 84, 297 (1972).
- 2) S. Kuroda, M. Oda, and Y. Kitahara, Angew. Chem., 85, 93 (1973).
- 3) M. Oda and Y. Kitahara, Chem. & Ind., 920 (1969).
- 4) L. A. Pinek and G. A. Hilbert, J. Amer. Chem. Soc., 69, 723 (1947).

(Received May 1, 1974)